Abstract:The increasing number of RSOs has raised concerns about the risk of collisions and catastrophic incidents for all direct and indirect users of space. To mitigate this issue, it is essential to have a good understanding of the various RSOs in orbit and their behaviour. A well-established taxonomy defining several classes of RSOs is a critical step in achieving this understanding. This taxonomy helps assign objects to specific categories based on their main characteristics, leading to better tracking services. Furthermore, a well-established taxonomy can facilitate research and analysis processes by providing a common language and framework for better understanding the factors that influence RSO behaviour in space. These factors, in turn, help design more efficient and effective strategies for space traffic management. Our work proposes a new taxonomy for RSOs focusing on the low Earth orbit regime to enhance space traffic management. In addition, we present a deep learning-based model that uses an autoencoder architecture to reduce the features representing the characteristics of the RSOs. The autoencoder generates a lower-dimensional space representation that is then explored using techniques such as Uniform Manifold Approximation and Projection to identify fundamental clusters of RSOs based on their unique characteristics. This approach captures the complex and non-linear relationships between the features and the RSOs' classes identified. Our proposed taxonomy and model offer a significant contribution to the ongoing efforts to mitigate the overall risks posed by the increasing number of RSOs in orbit.
Abstract:The risk of collision between resident space objects has significantly increased in recent years. As a result, spacecraft collision avoidance procedures have become an essential part of satellite operations. To ensure safe and effective space activities, satellite owners and operators rely on constantly updated estimates of encounters. These estimates include the uncertainty associated with the position of each object at the expected TCA. These estimates are crucial in planning risk mitigation measures, such as collision avoidance manoeuvres. As the TCA approaches, the accuracy of these estimates improves, as both objects' orbit determination and propagation procedures are made for increasingly shorter time intervals. However, this improvement comes at the cost of taking place close to the critical decision moment. This means that safe avoidance manoeuvres might not be possible or could incur significant costs. Therefore, knowing the evolution of this variable in advance can be crucial for operators. This work proposes a machine learning model based on diffusion models to forecast the position uncertainty of objects involved in a close encounter, particularly for the secondary object (usually debris), which tends to be more unpredictable. We compare the performance of our model with other state-of-the-art solutions and a na\"ive baseline approach, showing that the proposed solution has the potential to significantly improve the safety and effectiveness of spacecraft operations.
Abstract:Current approaches for collision avoidance and space traffic management face many challenges, mainly due to the continuous increase in the number of objects in orbit and the lack of scalable and automated solutions. To avoid catastrophic incidents, satellite owners/operators must be aware of their assets' collision risk to decide whether a collision avoidance manoeuvre needs to be performed. This process is typically executed through the use of warnings issued in the form of CDMs which contain information about the event, such as the expected TCA and the probability of collision. Our previous work presented a statistical learning model that allowed us to answer two important questions: (1) Will any new conjunctions be issued in the next specified time interval? (2) When and with what uncertainty will the next CDM arrive? However, the model was based on an empirical Bayes homogeneous Poisson process, which assumes that the arrival rates of CDMs are constant over time. In fact, the rate at which the CDMs are issued depends on the behaviour of the objects as well as on the screening process performed by third parties. Thus, in this work, we extend the previous study and propose a Bayesian non-homogeneous Poisson process implemented with high precision using a Probabilistic Programming Language to fully describe the underlying phenomena. We compare the proposed solution with a baseline model to demonstrate the added value of our approach. The results show that this problem can be successfully modelled by our Bayesian non-homogeneous Poisson Process with greater accuracy, contributing to the development of automated collision avoidance systems and helping operators react timely but sparingly with satellite manoeuvres.