Abstract:This work presents ParFormer as an enhanced transformer architecture that allows the incorporation of different token mixers into a single stage, hence improving feature extraction capabilities. Integrating both local and global data allows for precise representation of short- and long-range spatial relationships without the need for computationally intensive methods such as shifting windows. Along with the parallel token mixer encoder, We offer the Convolutional Attention Patch Embedding (CAPE) as an enhancement of standard patch embedding to improve token mixer extraction with a convolutional attention module. Our comprehensive evaluation demonstrates that our ParFormer outperforms CNN-based and state-of-the-art transformer-based architectures in image classification and several complex tasks such as object recognition. The proposed CAPE has been demonstrated to benefit the overall MetaFormer architecture, even while utilizing the Identity Mapping Token Mixer, resulting in a 0.5\% increase in accuracy. The ParFormer models outperformed ConvNeXt and Swin Transformer for the pure convolution and transformer model in accuracy. Furthermore, our model surpasses the current leading hybrid transformer by reaching competitive Top-1 scores in the ImageNet-1K classification test. Specifically, our model variants with 11M, 23M, and 34M parameters achieve scores of 80.4\%, 82.1\%, and 83.1\%, respectively. Code: https://github.com/novendrastywn/ParFormer-CAPE-2024