Abstract:Multi-view clustering has become increasingly important due to the multi-source character of real-world data. Among existing multi-view clustering methods, multi-kernel clustering and matrix factorization-based multi-view clustering have gained widespread attention as mainstream approaches. However, multi-kernel clustering tends to learn an optimal kernel and then perform eigenvalue decomposition on it, which leads to high computational complexity. Matrix factorization-based multi-view clustering methods impose orthogonal constraints on individual views. This overly emphasizes the accuracy of clustering structures within single views and restricts the learning of individual views. Based on this analysis, we propose a multi-view clustering method that integrates multi-kernel learning with matrix factorization. This approach combines the advantages of both multi-kernel learning and matrix factorization. It removes the orthogonal constraints on individual views and imposes orthogonal constraints on the consensus matrix, resulting in an accurate final clustering structure. Ultimately, the method is unified into a simple form of multi-kernel clustering, but avoids learning an optimal kernel, thus reducing the time complexity. Furthermore, we propose an efficient three-step optimization algorithm to achieve a locally optimal solution. Experiments on widely-used real-world datasets demonstrate the effectiveness of our proposed method.