Abstract:Multiview feature learning aims to learn discriminative features by integrating the distinct information in each view. However, most existing methods still face significant challenges in learning view-consistency features, which are crucial for effective multiview learning. Motivated by the theories of CCA and contrastive learning in multiview feature learning, we propose the hierarchical consensus network (HCN) in this paper. The HCN derives three consensus indices for capturing the hierarchical consensus across views, which are classifying consensus, coding consensus, and global consensus, respectively. Specifically, classifying consensus reinforces class-level correspondence between views from a CCA perspective, while coding consensus closely resembles contrastive learning and reflects contrastive comparison of individual instances. Global consensus aims to extract consensus information from two perspectives simultaneously. By enforcing the hierarchical consensus, the information within each view is better integrated to obtain more comprehensive and discriminative features. The extensive experimental results obtained on four multiview datasets demonstrate that the proposed method significantly outperforms several state-of-the-art methods.
Abstract:Semi-supervised image classification, leveraging pseudo supervision and consistency regularization, has demonstrated remarkable success. However, the ongoing challenge lies in fully exploiting the potential of unlabeled data. To address this, we employ information entropy neural estimation to harness the potential of unlabeled samples. Inspired by contrastive learning, the entropy is estimated by maximizing a lower bound on mutual information across different augmented views. Moreover, we theoretically analyze that the information entropy of the posterior of an image classifier is approximated by maximizing the likelihood function of the softmax predictions. Guided by these insights, we optimize our model from both perspectives to ensure that the predicted probability distribution closely aligns with the ground-truth distribution. Given the theoretical connection to information entropy, we name our method \textit{InfoMatch}. Through extensive experiments, we show its superior performance.