Abstract:The last few years have seen a lot of work to address the challenge of low-latency and high-throughput convolutional neural network inference. Integrated photonics has the potential to dramatically accelerate neural networks because of its low-latency nature. Combined with the concept of Joint Transform Correlator (JTC), the computationally expensive convolution functions can be computed instantaneously (time of flight of light) with almost no cost. This 'free' convolution computation provides the theoretical basis of the proposed PhotoFourier JTC-based CNN accelerator. PhotoFourier addresses a myriad of challenges posed by on-chip photonic computing in the Fourier domain including 1D lenses and high-cost optoelectronic conversions. The proposed PhotoFourier accelerator achieves more than 28X better energy-delay product compared to state-of-art photonic neural network accelerators.
Abstract:Recent advances in silicon photonics promise to revolutionize modern technology by improving performance of everyday devices in multiple fields. However, as the industry moves into a mass fabrication phase, the problem of effective testing of integrated silicon photonics devices remains to be solved. A cost-efficient manner that reduces schedule risk needs to involve automated testing of multiple devices that share common characteristics such as input-output coupling mechanisms, but at the same time needs to be generalizable to multiple types of devices and scenarios. In this paper we present a neural network-based automated system designed for in-plane fiber-chip-fiber testing, characterization, and active alignment of silicon photonic devices that use process-design-kit library edge couplers. The presented approach combines state-of-the-art computer vision techniques with time-series analysis, in order to control a testing setup that can process multiple devices and can be easily tuned to incorporate additional hardware. The system can operate at vacuum or atmospheric pressures and maintains stability for fairly long time periods in excess of a month.