Abstract:Social media processing is a fundamental task in natural language processing with numerous applications. As Vietnamese social media and information science have grown rapidly, the necessity of information-based mining on Vietnamese social media has become crucial. However, state-of-the-art research faces several significant drawbacks, including imbalanced data and noisy data on social media platforms. Imbalanced and noisy are two essential issues that need to be addressed in Vietnamese social media texts. Graph Convolutional Networks can address the problems of imbalanced and noisy data in text classification on social media by taking advantage of the graph structure of the data. This study presents a novel approach based on contextualized language model (PhoBERT) and graph-based method (Graph Convolutional Networks). In particular, the proposed approach, ViCGCN, jointly trained the power of Contextualized embeddings with the ability of Graph Convolutional Networks, GCN, to capture more syntactic and semantic dependencies to address those drawbacks. Extensive experiments on various Vietnamese benchmark datasets were conducted to verify our approach. The observation shows that applying GCN to BERTology models as the final layer significantly improves performance. Moreover, the experiments demonstrate that ViCGCN outperforms 13 powerful baseline models, including BERTology models, fusion BERTology and GCN models, other baselines, and SOTA on three benchmark social media datasets. Our proposed ViCGCN approach demonstrates a significant improvement of up to 6.21%, 4.61%, and 2.63% over the best Contextualized Language Models, including multilingual and monolingual, on three benchmark datasets, UIT-VSMEC, UIT-ViCTSD, and UIT-VSFC, respectively. Additionally, our integrated model ViCGCN achieves the best performance compared to other BERTology integrated with GCN models.
Abstract:Link prediction task is vital to automatically understanding the structure of large knowledge bases. In this paper, we present our system to solve this task at the Data Science and Advanced Analytics 2023 Competition "Efficient and Effective Link Prediction" (DSAA-2023 Competition) with a corpus containing 948,233 training and 238,265 for public testing. This paper introduces an approach to link prediction in Wikipedia articles by formulating it as a natural language inference (NLI) task. Drawing inspiration from recent advancements in natural language processing and understanding, we cast link prediction as an NLI task, wherein the presence of a link between two articles is treated as a premise, and the task is to determine whether this premise holds based on the information presented in the articles. We implemented our system based on the Sentence Pair Classification for Link Prediction for the Wikipedia Articles task. Our system achieved 0.99996 Macro F1-score and 1.00000 Macro F1-score for the public and private test sets, respectively. Our team UIT-NLP ranked 3rd in performance on the private test set, equal to the scores of the first and second places. Our code is publicly for research purposes.