Abstract:In this work, we propose a novel data-driven machine learning (ML) technique to model and predict the dynamics of the wireless propagation environment in latent space. Leveraging the idea of channel charting, which learns compressed representations of high-dimensional channel state information (CSI), we incorporate a predictive component to capture the dynamics of the wireless system. Hence, we jointly learn a channel encoder that maps the estimated CSI to an appropriate latent space, and a predictor that models the relationships between such representations. Accordingly, our problem boils down to training a joint-embedding predictive architecture (JEPA) that simulates the latent dynamics of a wireless network from CSI. We present numerical evaluations on measured data and show that the proposed JEPA displays a two-fold increase in accuracy over benchmarks, for longer look-ahead prediction tasks.
Abstract:In this paper, we investigate the problem of robust Reconfigurable Intelligent Surface (RIS) phase-shifts configuration over heterogeneous communication environments. The problem is formulated as a distributed learning problem over different environments in a Federated Learning (FL) setting. Equivalently, this corresponds to a game played between multiple RISs, as learning agents, in heterogeneous environments. Using Invariant Risk Minimization (IRM) and its FL equivalent, dubbed FL Games, we solve the RIS configuration problem by learning invariant causal representations across multiple environments and then predicting the phases. The solution corresponds to playing according to Best Response Dynamics (BRD) which yields the Nash Equilibrium of the FL game. The representation learner and the phase predictor are modeled by two neural networks, and their performance is validated via simulations against other benchmarks from the literature. Our results show that causality-based learning yields a predictor that is 15% more accurate in unseen Out-of-Distribution (OoD) environments.