Abstract:Dual active bridge (DAB) converter is the key enabler in many popular applications such as wireless charging, electric vehicle and renewable energy. ZVS range and efficiency are two significant performance indicators for DAB converter. To obtain the desired ZVS and efficiency performance, modulation should be carefully designed. Hybrid modulation considers several single modulation strategies to achieve good comprehensive performance. Conventionally, to design a hybrid modulation, harmonic approach or piecewise approach is used, but they suffer from time-consuming model building process and inaccuracy. Therefore, an artificial-intelligence-based hybrid extended phase shift (HEPS) modulation is proposed. Generally, the HEPS modulation is developed in an automated fashion, which alleviates cumbersome model building process while keeping high model accuracy. In HEPS modulation, two EPS strategies are considered to realize optimal efficiency with full ZVS operation over entire operating ranges. Specifically, to build data-driven models of ZVS and efficiency performance, extreme gradient boosting (XGBoost), which is a state-of-the-art ensemble learning algorithm, is adopted. Afterwards, particle swarm optimization with state-based adaptive velocity limit (PSO-SAVL) is utilized to select the best EPS strategy and optimize modulation parameters. With 1 kW hardware experiments, the feasibility of HEPS has been verified, achieving optimal efficiency with maximum of 97.1% and full-range ZVS operation.
Abstract:The dual active bridge (DAB) converter has been popular in many applications for its outstanding power density and bidirectional power transfer capacity. Up to now, triple phase shift (TPS) can be considered as one of the most advanced modulation techniques for DAB converter. It can widen zero voltage switching range and improve power efficiency significantly. Currently, current stress of the DAB converter has been an important performance indicator when TPS modulation is applied for smaller size and higher efficiency. However, to minimize the current stress when the DAB converter is under TPS modulation, two difficulties exist in analysis process and realization process, respectively. Firstly, three degrees of modulation variables in TPS modulation bring challenges to the analysis of current stress in different operating modes. This analysis and deduction process leads to heavy computational burden and also suffers from low accuracy. Secondly, to realize TPS modulation, if a lookup table is adopted after the optimization of modulation variables, modulation performance will be unsatisfactory because of the discrete nature of lookup table. Therefore, an AI-based TPS modulation (AI-TPSM) strategy is proposed in this paper. Neural network (NN) and fuzzy inference system (FIS) are utilized to deal with the two difficulties mentioned above. With the proposed AI-TPSM, the optimization of TPS modulation for minimized current stress will enjoy high degree of automation which can relieve engineers' working burden and improve accuracy. In the end of this paper, the effectiveness of the proposed AI-TPSM has been experimentally verified with a 1 kW prototype.