Abstract:Learning-based methods have achieved great success on single image dehazing in recent years. However, these methods are often subject to performance degradation when domain shifts are confronted. Specifically, haze density gaps exist among the existing datasets, often resulting in poor performance when these methods are tested across datasets. To address this issue, we propose a density-aware data augmentation method (DAMix) that generates synthetic hazy samples according to the haze density level of the target domain. These samples are generated by combining a hazy image with its corresponding ground truth by a combination ratio sampled from a density-aware distribution. They not only comply with the atmospheric scattering model but also bridge the haze density gap between the source and target domains. DAMix ensures that the model learns from examples featuring diverse haze densities. To better utilize the various hazy samples generated by DAMix, we develop a dual-branch dehazing network involving two branches that can adaptively remove haze according to the haze density of the region. In addition, the dual-branch design enlarges the learning capacity of the entire network; hence, our network can fully utilize the DAMix-ed samples. We evaluate the effectiveness of DAMix by applying it to the existing open-source dehazing methods. The experimental results demonstrate that all methods show significant improvements after DAMix is applied. Furthermore, by combining DAMix with our model, we can achieve state-of-the-art (SOTA) performance in terms of domain adaptation.