Abstract:Riddles are concise linguistic puzzles that describe an object or idea through indirect, figurative, or playful clues. They are a longstanding form of creative expression, requiring the solver to interpret hints, recognize patterns, and draw inferences to identify the answers. In this work, we introduce a simple pipeline for creating and evaluating analogy-based riddles. The system includes a triples creator that builds structured facts about a concept, a semantic mapper that selects attributes useful for analogy, a stylized generator that turns them into riddle clues, and a validator that collects all possible answers the riddle could point to. We use this validator to study whether large language models can recover the full answer set for different riddle types. Our case study shows that while models often guess the main intended answer, they frequently miss other valid interpretations. This highlights the value of riddles as a lightweight tool for examining reasoning coverage and ambiguity handling in language models.
Abstract:One of the primary challenges in online learning environments, is to retain learner engagement. Several different instructional strategies are proposed both in online and offline environments to enhance learner engagement. The Concept Attainment Model is one such instructional strategy that focuses on learners acquiring a deeper understanding of a concept rather than just its dictionary definition. This is done by searching and listing the properties used to distinguish examples from non-examples of various concepts. Our work attempts to apply the Concept Attainment Model to build conceptual riddles, to deploy over online learning environments. The approach involves creating factual triples from learning resources, classifying them based on their uniqueness to a concept into `Topic Markers' and `Common', followed by generating riddles based on the Concept Attainment Model's format and capturing all possible solutions to those riddles. The results obtained from the human evaluation of riddles prove encouraging.




Abstract:In this paper, we propose an AI based approach to Trailer Generation in the form of short videos for online educational courses. Trailers give an overview of the course to the learners and help them make an informed choice about the courses they want to learn. It also helps to generate curiosity and interest among the learners and encourages them to pursue a course. While it is possible to manually generate the trailers, it requires extensive human efforts and skills over a broad spectrum of design, span selection, video editing, domain knowledge, etc., thus making it time-consuming and expensive, especially in an academic setting. The framework we propose in this work is a template based method for video trailer generation, where most of the textual content of the trailer is auto-generated and the trailer video is automatically generated, by leveraging Machine Learning and Natural Language Processing techniques. The proposed trailer is in the form of a timeline consisting of various fragments created by selecting, para-phrasing or generating content using various proposed techniques. The fragments are further enhanced by adding voice-over text, subtitles, animations, etc., to create a holistic experience. Finally, we perform user evaluation with 63 human evaluators for evaluating the trailers generated by our system and the results obtained were encouraging.