Abstract:This paper proposes a deep convolutional neural network for performing note-level instrument assignment. Given a polyphonic multi-instrumental music signal along with its ground truth or predicted notes, the objective is to assign an instrumental source for each note. This problem is addressed as a pitch-informed classification task where each note is analysed individually. We also propose to utilise several kernel shapes in the convolutional layers in order to facilitate learning of efficient timbre-discriminative feature maps. Experiments on the MusicNet dataset using 7 instrument classes show that our approach is able to achieve an average F-score of 0.904 when the original multi-pitch annotations are used as the pitch information for the system, and that it also excels if the note information is provided using third-party multi-pitch estimation algorithms. We also include ablation studies investigating the effects of the use of multiple kernel shapes and comparing different input representations for the audio and the note-related information.
Abstract:This paper addresses the problem of domain adaptation for the task of music source separation. Using datasets from two different domains, we compare the performance of a deep learning-based harmonic-percussive source separation model under different training scenarios, including supervised joint training using data from both domains and pre-training in one domain with fine-tuning in another. We propose an adversarial unsupervised domain adaptation approach suitable for the case where no labelled data (ground-truth source signals) from a target domain is available. By leveraging unlabelled data (only mixtures) from this domain, experiments show that our framework can improve separation performance on the new domain without losing any considerable performance on the original domain. The paper also introduces the Tap & Fiddle dataset, a dataset containing recordings of Scandinavian fiddle tunes along with isolated tracks for 'foot-tapping' and 'violin'.