Abstract:The quick and accurate retrieval of an object height from a single fringe pattern in Fringe Projection Profilometry has been a topic of ongoing research. While a single shot fringe to depth CNN based method can restore height map directly from a single pattern, its accuracy is currently inferior to the traditional phase shifting technique. To improve this method's accuracy, we propose using a U shaped High resolution Network (UHRNet). The network uses UNet encoding and decoding structure as backbone, with Multi-Level convolution Block and High resolution Fusion Block applied to extract local features and global features. We also designed a compound loss function by combining Structural Similarity Index Measure Loss (SSIMLoss) function and chunked L2 loss function to improve 3D reconstruction details.We conducted several experiments to demonstrate the validity and robustness of our proposed method. A few experiments have been conducted to demonstrate the validity and robustness of the proposed method, The average RMSE of 3D reconstruction by our method is only 0.443(mm). which is 41.13% of the UNet method and 33.31% of Wang et al hNet method. Our experimental results show that our proposed method can increase the accuracy of 3D reconstruction from a single fringe pattern.
Abstract:Conventional dual-frequency fringe projection algorithm often suffers from phase unwrapping failure when the frequency ratio between the high frequency and the low one is too large. Zhang et.al. proposed an enhanced two-frequency phase-shifting method to use geometric constraints of digital fringe projection(DFP) to reduce the noise impact due to the large frequency ratio. However, this method needs to calibrate the DFP system and calculate the minimum phase map at the nearest position from the camera perspective, these procedures are are relatively complex and more time-cosuming. In this paper, we proposed an improved method, which eliminates the system calibration and determination in Zhang's method,meanwhile does not need to use the low frequency fringe pattern. In the proposed method,we only need a set of high frequency fringe patterns to measure the object after the high frequency is directly estimated by the experiment. Thus the proposed method can simplify the procedure and improve the speed. Finally, the experimental evaluation is conducted to prove the validity of the proposed method.The results demonstrate that the proposed method can overcome the main disadvantages encountered by Zhang's method.
Abstract:It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying idle the other unsaturated ones. We proposed a method for enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm, which combines the complementary technique of inverted and regular fringe patterns with generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely regular and inverted fringe patterns are projected and collected. Then all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected, and employed to retrieve the phase by generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with Jiang's method, which demonstrate that the proposed method not only expands the scope of Jiang's method, but also improves the measurement accuracy.