Abstract:Unwanted vibrations stemming from the energy-optimized design of Delta robots pose a challenge in their operation, especially with respect to precise reference tracking. To improve tracking accuracy, this paper proposes an adaptive mismatch-compensated iterative learning controller based on input shaping techniques. We establish a dynamic model considering the electromechanical rigid-flexible coupling of the Delta robot, which integrates the permanent magnet synchronous motor. Using this model, we design an optimization-based input shaper, considering the natural frequency of the robot, which varies with the configuration. We proposed an iterative learning controller for the delta robot to improve tracking accuracy. Our iterative learning controller incorporates model mismatch where the mismatch approximated by a fuzzy logic structure. The convergence property of the proposed controller is proved using a Barrier Composite Energy Function, providing a guarantee that the tracking errors along the iteration axis converge to zero. Moreover, adaptive parameter update laws are designed to ensure convergence. Finally, we perform a series of high-fidelity simulations of the Delta robot using Simscape to demonstrate the effectiveness of the proposed control strategy.
Abstract:Singularities, manifesting as special configuration states, deteriorate robot performance and may even lead to a loss of control over the system. This paper addresses the kinematic singularity concerns in robotic systems with model mismatch and actuator constraints through control barrier functions (CBFs). We propose a learning-based control strategy to prevent robots entering singularity regions. More precisely, we leverage Gaussian process (GP) regression to learn the unknown model mismatch, where the prediction error is restricted by a deterministic bound. Moreover, we offer the criteria for parameter selection to ensure the feasibility of CBFs subject to actuator constraints. The proposed approach is validated by high-fidelity simulations on a 2 degrees-of-freedom (DoFs) planar robot.
Abstract:Rescue robotics sets high requirements to perception algorithms due to the unstructured and potentially vision-denied environments. Pivoting Frequency-Modulated Continuous Wave radars are an emerging sensing modality for SLAM in this kind of environment. However, the complex noise characteristics of radar SLAM makes, particularly indoor, applications computationally demanding and slow. In this work, we introduce a novel radar SLAM framework, RaNDT SLAM, that operates fast and generates accurate robot trajectories. The method is based on the Normal Distributions Transform augmented by radar intensity measures. Motion estimation is based on fusion of motion model, IMU data, and registration of the intensity-augmented Normal Distributions Transform. We evaluate RaNDT SLAM in a new benchmark dataset and the Oxford Radar RobotCar dataset. The new dataset contains indoor and outdoor environments besides multiple sensing modalities (LiDAR, radar, and IMU).
Abstract:As labor shortage is rising at an alarming rate, it is imperative to enable all people to work, particularly people with disabilities and elderly people. Robots are often used as universal tool to assist people with disabilities. However, for such human-robot workstations universal design fails. We mitigate the challenges of selecting an individualized set of input and output devices by matching devices required by the work process and individual disabilities adhering to the Convention on the Rights of Persons with Disabilities passed by the United Nations. The objective is to facilitate economically viable workstations with just the required devices, hence, lowering overall cost of corporate inclusion and during redesign of workplaces. Our work focuses on developing an efficient approach to filter input and output devices based on a person's disabilities, resulting in a tailored list of usable devices. The methodology enables an automated assessment of devices compatible with specific disabilities defined in International Classification of Functioning, Disability and Health. In a mock-up, we showcase the synthesis of input and output devices from disabilities, thereby providing a practical tool for selecting devices for individuals with disabilities.
Abstract:Firefighting is a complex, yet low automated task. To mitigate ergonomic and safety related risks on the human operators, robots could be deployed in a collaborative approach. To allow human-robot teams in firefighting, important basics are missing. Amongst other aspects, the robot must predict the human motion as occlusion is ever-present. In this work, we propose a novel motion prediction pipeline for firefighters' squads in indoor search and rescue. The squad paths are generated with an optimal graph-based planning approach representing firefighters' tactics. Paths are generated per room which allows to dynamically adapt the path locally without global re-planning. The motion of singular agents is simulated using a modification of the headed social force model. We evaluate the pipeline for feasibility with a novel data set generated from real footage and show the computational efficiency.