Abstract:Background: Deception detection through analysing language is a promising avenue using both human judgments and automated machine learning judgments. For both forms of credibility assessment, automated adversarial attacks that rewrite deceptive statements to appear truthful pose a serious threat. Methods: We used a dataset of 243 truthful and 262 fabricated autobiographical stories in a deception detection task for humans and machine learning models. A large language model was tasked to rewrite deceptive statements so that they appear truthful. In Study 1, humans who made a deception judgment or used the detailedness heuristic and two machine learning models (a fine-tuned language model and a simple n-gram model) judged original or adversarial modifications of deceptive statements. In Study 2, we manipulated the target alignment of the modifications, i.e. tailoring the attack to whether the statements would be assessed by humans or computer models. Results: When adversarial modifications were aligned with their target, human (d=-0.07 and d=-0.04) and machine judgments (51% accuracy) dropped to the chance level. When the attack was not aligned with the target, both human heuristics judgments (d=0.30 and d=0.36) and machine learning predictions (63-78%) were significantly better than chance. Conclusions: Easily accessible language models can effectively help anyone fake deception detection efforts both by humans and machine learning models. Robustness against adversarial modifications for humans and machines depends on that target alignment. We close with suggestions on advancing deception research with adversarial attack designs.
Abstract:Background: Deception detection is a prevalent problem for security practitioners. With a need for more large-scale approaches, automated methods using machine learning have gained traction. However, detection performance still implies considerable error rates. Findings from other domains suggest that hybrid human-machine integrations could offer a viable path in deception detection tasks. Method: We collected a corpus of truthful and deceptive answers about participants' autobiographical intentions (n=1640) and tested whether a combination of supervised machine learning and human judgment could improve deception detection accuracy. Human judges were presented with the outcome of the automated credibility judgment of truthful and deceptive statements. They could either fully overrule it (hybrid-overrule condition) or adjust it within a given boundary (hybrid-adjust condition). Results: The data suggest that in neither of the hybrid conditions did the human judgment add a meaningful contribution. Machine learning in isolation identified truth-tellers and liars with an overall accuracy of 69%. Human involvement through hybrid-overrule decisions brought the accuracy back to the chance level. The hybrid-adjust condition did not deception detection performance. The decision-making strategies of humans suggest that the truth bias - the tendency to assume the other is telling the truth - could explain the detrimental effect. Conclusion: The current study does not support the notion that humans can meaningfully add to the deception detection performance of a machine learning system.