Abstract:In complex auditory environments, the human auditory system possesses the remarkable ability to focus on a specific speaker while disregarding others. In this study, a new model named SWIM, a short-window convolution neural network (CNN) integrated with Mamba, is proposed for identifying the locus of auditory attention (left or right) from electroencephalography (EEG) signals without relying on speech envelopes. SWIM consists of two parts. The first is a short-window CNN (SW$_\text{CNN}$), which acts as a short-term EEG feature extractor and achieves a final accuracy of 84.9% in the leave-one-speaker-out setup on the widely used KUL dataset. This improvement is due to the use of an improved CNN structure, data augmentation, multitask training, and model combination. The second part, Mamba, is a sequence model first applied to auditory spatial attention decoding to leverage the long-term dependency from previous SW$_\text{CNN}$ time steps. By joint training SW$_\text{CNN}$ and Mamba, the proposed SWIM structure uses both short-term and long-term information and achieves an accuracy of 86.2%, which reduces the classification errors by a relative 31.0% compared to the previous state-of-the-art result. The source code is available at https://github.com/windowso/SWIM-ASAD.
Abstract:Financial report generation using general purpose large language models pose two major challenges, including the lack of compound sentences and hallucinations. Advanced prompt engineering and retrieval augmented generation (RAG) techniques are incapable of curing the writing style discrepancies. In this work we propose a novel two-stage fine-tuning process wherein public domain financial reports are processed into prompt-completions and augmented using simple LLM prompts to then enable sectional financial report generation using minimal instructions and tabular data inputs. Our proposed fine-tuning framework results doubles the number of correct questions answers and reduces hallucinations by over 50%. Additionally, the two-stage fine tuned models have lower perplexity, improved ROUGE, TER and BLEU scores, higher creativity and knowledge density with lower uncertainty and cross entropy.
Abstract:Large language models (LLMs) with residual augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions in the recent past. However, the choice of use-cases that incorporate RAG with LLMs have been either generic or extremely domain specific, thereby questioning the scalability and generalizability of RAG-LLM approaches. In this work, we propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user query routing, data retrieval and custom prompting for question answering capabilities from data tables that are highly varying and large in size. Our system is tuned to extract information from Enterprise-level data products and furnish real time responses under 10 seconds. One prompt manages user-to-data authentication followed by three prompts to route, fetch data and generate a customizable prompt natural language responses. Additionally, we propose a five metric scoring module that detects and reports hallucinations in the LLM responses. Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains. Extensions to the proposed extreme RAG architectures can enable heterogeneous source querying using LLMs.
Abstract:Large Language Models (LLMs) have been applied to build several automation and personalized question-answering prototypes so far. However, scaling such prototypes to robust products with minimized hallucinations or fake responses still remains an open challenge, especially in niche data-table heavy domains such as financial decision making. In this work, we present a novel Langchain-based framework that transforms data tables into hierarchical textual data chunks to enable a wide variety of actionable question answering. First, the user-queries are classified by intention followed by automated retrieval of the most relevant data chunks to generate customized LLM prompts per query. Next, the custom prompts and their responses undergo multi-metric scoring to assess for hallucinations and response confidence. The proposed system is optimized with user-query intention classification, advanced prompting, data scaling capabilities and it achieves over 90% confidence scores for a variety of user-queries responses ranging from {What, Where, Why, How, predict, trend, anomalies, exceptions} that are crucial for financial decision making applications. The proposed data to answers framework can be extended to other analytical domains such as sales and payroll to ensure optimal hallucination control guardrails.