Tony
Abstract:Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Abstract:Boulders form from a variety of geological processes, which their size, shape, and orientation may help us better understand. Furthermore, they represent potential hazards to spacecraft landing that need to be characterized. However, mapping individual boulders across vast areas is extremely labor-intensive, often limiting the extent over which they are characterized and the statistical robustness of obtained boulder morphometrics. To automate boulder characterization, we use an instance segmentation neural network, Mask R-CNN, to detect and outline boulders in high-resolution satellite images. Our neural network, BoulderNet, was trained from a dataset of > 33,000 boulders in > 750 image tiles from Earth, the Moon, and Mars. BoulderNet not only correctly detects the majority of boulders in images, but it identifies the outline of boulders with high fidelity, achieving average precision and recall values of 72% and 64% relative to manually digitized boulders from the test dataset, when only detections with intersection-over-union ratios > 50% are considered valid. These values are similar to those obtained by human mappers. On Earth, equivalent boulder diameters, aspect ratios, and orientations extracted from predictions were benchmarked against ground measurements and yield values within 15%, 0.20, and 20 degrees of their ground-truth values, respectively. BoulderNet achieves better boulder detection and characterization performance relative to existing methods, providing a versatile open-source tool to characterize entire boulder fields on planetary surfaces.