Abstract:Visible light communication (VLC) complements radio frequency in indoor environments with large wireless data traffic. However, VLC is hindered by dramatic path losses when an opaque object is interposed between the transmitter and the receiver. Prior works propose the use of plane mirrors as optical reconfigurable intelligent surfaces (ORISs) to enhance communications through non-line-of-sight links. Plane mirrors rely on their orientation to forward the light to the target user location, which is challenging to implement in practice. This paper studies the potential of curved mirrors as static reflective surfaces to provide a broadening specular reflection that increases the signal coverage in mirror-assisted VLC scenarios. We study the behavior of paraboloid and semi-spherical mirrors and derive the irradiance equations. We provide extensive numerical and analytical results and show that curved mirrors, when developed with proper dimensions, may reduce the shadowing probability to zero, while static plane mirrors of the same size have shadowing probabilities larger than 65%. Furthermore, the signal-to-noise ratio offered by curved mirrors may suffice to provide connectivity to users deployed in the room even when a line-of-sight link blockage occurs.
Abstract:Visible light communication (VLC) is a technology that complements radio frequency (RF) to fulfill the ever-increasing demand for wireless data traffic. The ubiquity of light-emitting diodes (LEDs), exploited as transmitters, increases the VLC market penetration and positions it as one of the most promising technologies to alleviate the spectrum scarcity of RF. However, VLC deployment is hindered by blockage causing connectivity outages in the presence of obstacles. Recently, optical reconfigurable intelligent surfaces (ORISs) have been considered to mitigate this problem. While prior works exploit ORISs for data or secrecy rate maximization, this paper studies the optimal placement of mirrors and ORISs, and the LED power allocation, for jointly minimizing the outage probability while keeping the lighting standards. We describe an optimal outage minimization framework and present solvable heuristics. We provide extensive numerical results and show that the use of ORISs may reduce the outage probability by up to 67% with respect to a no-mirror scenario and provide a gain of hundreds of kbit/J in optical energy efficiency with respect to the presented benchmark.