Abstract:This paper proposes an approach in the area of Knowledge-Guided Machine Learning (KGML) via a novel integrated framework comprising CNN (Convolutional Neural Networks) and ViT (Vision Transformers) along with GIS (Geographic Information Systems) to enhance power plant classification in the context of energy management. Knowledge from geoinformatics derived through Spatial Masks (SM) in GIS is infused into an architecture of CNN and ViT, in this proposed KGML approach. It is found to provide much better performance compared to the baseline of CNN and ViT only in the classification of multiple types of power plants from real satellite imagery, hence emphasizing the vital role of the geoinformatics-guided approach. This work makes a contribution to the main theme of KGML that can be beneficial in many AI systems today. It makes broader impacts on AI in Smart Cities, and Environmental Computing.
Abstract:In this research, we propose a hybrid model for power plant detection to assist energy estimation applications, by pipelining GIS (Geographical Information Systems) having Remote Sensing capabilities with CNN (Convolutional Neural Networks) and ViT (Vision Transformers). Our proposed approach enables real-time analysis with multiple data types on a common map via the GIS, entails feature-extraction abilities due to the CNN, and captures long-range dependencies through the ViT. This hybrid approach is found to enhance classification, thus helping in the monitoring and operational management of power plants; hence assisting energy estimation and sustainable energy planning in the future. It exemplifies adequate deployment of machine learning methods in conjunction with domain-specific approaches to enhance performance.