Abstract:Deep Learning (DL) based downscaling has become a popular tool in earth sciences recently. Increasingly, different DL approaches are being adopted to downscale coarser precipitation data and generate more accurate and reliable estimates at local (~few km or even smaller) scales. Despite several studies adopting dynamical or statistical downscaling of precipitation, the accuracy is limited by the availability of ground truth. A key challenge to gauge the accuracy of such methods is to compare the downscaled data to point-scale observations which are often unavailable at such small scales. In this work, we carry out the DL-based downscaling to estimate the local precipitation data from the India Meteorological Department (IMD), which was created by approximating the value from station location to a grid point. To test the efficacy of different DL approaches, we apply four different methods of downscaling and evaluate their performance. The considered approaches are (i) Deep Statistical Downscaling (DeepSD), augmented Convolutional Long Short Term Memory (ConvLSTM), fully convolutional network (U-NET), and Super-Resolution Generative Adversarial Network (SR-GAN). A custom VGG network, used in the SR-GAN, is developed in this work using precipitation data. The results indicate that SR-GAN is the best method for precipitation data downscaling. The downscaled data is validated with precipitation values at IMD station. This DL method offers a promising alternative to statistical downscaling.
Abstract:Precipitation governs Earth's hydroclimate, and its daily spatiotemporal fluctuations have major socioeconomic effects. Advances in Numerical weather prediction (NWP) have been measured by the improvement of forecasts for various physical fields such as temperature and pressure; however, large biases exist in precipitation prediction. We augment the output of the well-known NWP model CFSv2 with deep learning to create a hybrid model that improves short-range global precipitation at 1-, 2-, and 3-day lead times. To hybridise, we address the sphericity of the global data by using modified DLWP-CS architecture which transforms all the fields to cubed-sphere projection. Dynamical model precipitation and surface temperature outputs are fed into a modified DLWP-CS (UNET) to forecast ground truth precipitation. While CFSv2's average bias is +5 to +7 mm/day over land, the multivariate deep learning model decreases it to within -1 to +1 mm/day. Hurricane Katrina in 2005, Hurricane Ivan in 2004, China floods in 2010, India floods in 2005, and Myanmar storm Nargis in 2008 are used to confirm the substantial enhancement in the skill for the hybrid dynamical-deep learning model. CFSv2 typically shows a moderate to large bias in the spatial pattern and overestimates the precipitation at short-range time scales. The proposed deep learning augmented NWP model can address these biases and vastly improve the spatial pattern and magnitude of predicted precipitation. Deep learning enhanced CFSv2 reduces mean bias by 8x over important land regions for 1 day lead compared to CFSv2. The spatio-temporal deep learning system opens pathways to further the precision and accuracy in global short-range precipitation forecasts.
Abstract:This survey focuses on the current problems in Earth systems science where machine learning algorithms can be applied. It provides an overview of previous work, ongoing work at the Ministry of Earth Sciences, Gov. of India, and future applications of ML algorithms to some significant earth science problems. We provide a comparison of previous work with this survey, a mind map of multidimensional areas related to machine learning and a Gartner's hype cycle for machine learning in Earth system science (ESS). We mainly focus on the critical components in Earth Sciences, including atmospheric, Ocean, Seismology, and biosphere, and cover AI/ML applications to statistical downscaling and forecasting problems.
Abstract:The formation of precipitation in state-of-the-art weather and climate models is an important process. The understanding of its relationship with other variables can lead to endless benefits, particularly for the world's monsoon regions dependent on rainfall as a support for livelihood. Various factors play a crucial role in the formation of rainfall, and those physical processes are leading to significant biases in the operational weather forecasts. We use the UNET architecture of a deep convolutional neural network with residual learning as a proof of concept to learn global data-driven models of precipitation. The models are trained on reanalysis datasets projected on the cubed-sphere projection to minimize errors due to spherical distortion. The results are compared with the operational dynamical model used by the India Meteorological Department. The theoretical deep learning-based model shows doubling of the grid point, as well as area averaged skill measured in Pearson correlation coefficients relative to operational system. This study is a proof-of-concept showing that residual learning-based UNET can unravel physical relationships to target precipitation, and those physical constraints can be used in the dynamical operational models towards improved precipitation forecasts. Our results pave the way for the development of online, hybrid models in the future.
Abstract:Downscaling is necessary to generate high-resolution observation data to validate the climate model forecast or monitor rainfall at the micro-regional level operationally. Dynamical and statistical downscaling models are often used to get information at high-resolution gridded data over larger domains. As rainfall variability is dependent on the complex Spatio-temporal process leading to non-linear or chaotic Spatio-temporal variations, no single downscaling method can be considered efficient enough. In data with complex topographies, quasi-periodicities, and non-linearities, deep Learning (DL) based methods provide an efficient solution in downscaling rainfall data for regional climate forecasting and real-time rainfall observation data at high spatial resolutions. In this work, we employed three deep learning-based algorithms derived from the super-resolution convolutional neural network (SRCNN) methods, to precipitation data, in particular, IMD and TRMM data to produce 4x-times high-resolution downscaled rainfall data during the summer monsoon season. Among the three algorithms, namely SRCNN, stacked SRCNN, and DeepSD, employed here, the best spatial distribution of rainfall amplitude and minimum root-mean-square error is produced by DeepSD based downscaling. Hence, the use of the DeepSD algorithm is advocated for future use. We found that spatial discontinuity in amplitude and intensity rainfall patterns is the main obstacle in the downscaling of precipitation. Furthermore, we applied these methods for model data postprocessing, in particular, ERA5 data. Downscaled ERA5 rainfall data show a much better distribution of spatial covariance and temporal variance when compared with observation.