Abstract:Named Entity Recognition (NER) and Part-of-Speech (POS) tagging are critical tasks for Natural Language Processing (NLP), yet their availability for low-resource languages (LRLs) like Bodo remains limited. This article presents a comparative empirical study investigating the effectiveness of Google's Gemini 2.0 Flash Thinking Experiment model for zero-shot cross-lingual transfer of POS and NER tagging to Bodo. We explore two distinct methodologies: (1) direct translation of English sentences to Bodo followed by tag transfer, and (2) prompt-based tag transfer on parallel English-Bodo sentence pairs. Both methods leverage the machine translation and cross-lingual understanding capabilities of Gemini 2.0 Flash Thinking Experiment to project English POS and NER annotations onto Bodo text in CONLL-2003 format. Our findings reveal the capabilities and limitations of each approach, demonstrating that while both methods show promise for bootstrapping Bodo NLP, prompt-based transfer exhibits superior performance, particularly for NER. We provide a detailed analysis of the results, highlighting the impact of translation quality, grammatical divergences, and the inherent challenges of zero-shot cross-lingual transfer. The article concludes by discussing future research directions, emphasizing the need for hybrid approaches, few-shot fine-tuning, and the development of dedicated Bodo NLP resources to achieve high-accuracy POS and NER tagging for this low-resource language.
Abstract:Language Processing systems such as Part-of-speech tagging, Named entity recognition, Machine translation, Speech recognition, and Language modeling (LM) are well-studied in high-resource languages. Nevertheless, research on these systems for several low-resource languages, including Bodo, Mizo, Nagamese, and others, is either yet to commence or is in its nascent stages. Language model plays a vital role in the downstream tasks of modern NLP. Extensive studies are carried out on LMs for high-resource languages. Nevertheless, languages such as Bodo, Rabha, and Mising continue to lack coverage. In this study, we first present BodoBERT, a language model for the Bodo language. To the best of our knowledge, this work is the first such effort to develop a language model for Bodo. Secondly, we present an ensemble DL-based POS tagging model for Bodo. The POS tagging model is based on combinations of BiLSTM with CRF and stacked embedding of BodoBERT with BytePairEmbeddings. We cover several language models in the experiment to see how well they work in POS tagging tasks. The best-performing model achieves an F1 score of 0.8041. A comparative experiment was also conducted on Assamese POS taggers, considering that the language is spoken in the same region as Bodo.