Abstract:Fingerprints have long been recognized as a unique and reliable means of personal identification. Central to the analysis and enhancement of fingerprints is the concept of the fingerprint core. Although the location of the core is used in many applications, to the best of our knowledge, this study is the first to investigate the empirical distribution of the core over a large, combined dataset of rolled, as well as plain fingerprint recordings. We identify and investigate the extent of incomplete rolling during the rolled fingerprint acquisition and investigate the centrality of the core. After correcting for the incomplete rolling, we find that the core deviates from the fingerprint center by 5.7% $\pm$ 5.2% to 7.6% $\pm$ 6.9%, depending on the finger. Additionally, we find that the assumption of normal distribution of the core position of plain fingerprint recordings cannot be rejected, but for rolled ones it can. Therefore, we use a multi-step process to find the distribution of the rolled fingerprint recordings. The process consists of an Anderson-Darling normality test, the Bayesian Information Criterion to reduce the number of possible candidate distributions and finally a Generalized Monte Carlo goodness-of-fit procedure to find the best fitting distribution. We find the non-central Fischer distribution best describes the cores' horizontal positions. Finally, we investigate the correlation between mean core position offset and the NFIQ 2 score and find that the NFIQ 2 prefers rolled fingerprint recordings where the core sits slightly below the fingerprint center.
Abstract:We propose MCLFIQ: Mobile Contactless Fingerprint Image Quality, the first quality assessment algorithm for mobile contactless fingerprint samples. To this end, we retrained the NIST Fingerprint Image Quality (NFIQ) 2 method, which was originally designed for contact-based fingerprints, with a synthetic contactless fingerprint database. We evaluate the predictive performance of the resulting MCLFIQ model in terms of Error-vs.-Discard Characteristic (EDC) curves on three real-world contactless fingerprint databases using two recognition algorithms. In experiments, the MCLFIQ method is compared against the original NFIQ 2 method and a sharpness-based quality assessment algorithm developed for contactless fingerprint images. Obtained results show that the re-training of NFIQ 2 on synthetic data is a viable alternative to training on real databases. Moreover, the evaluation shows that our MCLFIQ method works more accurate and robust compared to NFIQ 2 and the sharpness-based quality assessment. We suggest considering the proposed MCLFIQ method as a candidate for a new standard algorithm for contactless fingerprint quality assessment.