Abstract:We present a novel approach to exploring innovation problem and solution domains using LLM fine-tuning with a custom idea database. By semantically traversing the bi-directional problem and solution tree at different temperature levels we achieve high diversity in solution edit distance while still remaining close to the original problem statement semantically. In addition to finding a variety of solutions to a given problem, this method can also be used to refine and clarify the original problem statement. As further validation of the approach, we implemented a proof-of-concept Slack bot to serve as an innovation assistant.
Abstract:We argue that many properties of fully-connected feedforward neural networks (FCNNs), also called multi-layer perceptrons (MLPs), are explainable from the analysis of a single pair of operations, namely a random projection into a higher-dimensional space than the input, followed by a sparsification operation. For convenience, we call this pair of successive operations expand-and-sparsify following the terminology of Dasgupta. We show how expand-and-sparsify can explain the observed phenomena that have been discussed in the literature, such as the so-called Lottery Ticket Hypothesis, the surprisingly good performance of randomly-initialized untrained neural networks, the efficacy of Dropout in training and most importantly, the mysterious generalization ability of overparameterized models, first highlighted by Zhang et al. and subsequently identified even in non-neural network models by Belkin et al.
Abstract:Communications standards are designed via committees of humans holding repeated meetings over months or even years until consensus is achieved. This includes decisions regarding the modulation and coding schemes to be supported over an air interface. We propose a way to "automate" the selection of the set of modulation and coding schemes to be supported over a given air interface and thereby streamline both the standards design process and the ease of extending the standard to support new modulation schemes applicable to new higher-level applications and services. Our scheme involves machine learning, whereby a constructor entity submits proposals to an evaluator entity, which returns a score for the proposal. The constructor employs reinforcement learning to iterate on its submitted proposals until a score is achieved that was previously agreed upon by both constructor and evaluator to be indicative of satisfying the required design criteria (including performance metrics for transmissions over the interface).