Abstract:Many users reading online articles in various magazines may suffer considerable difficulty in distinguishing the implicit intents in texts. In this work, we focus on automatically recognizing the political intents of a given online newspaper by understanding the context of the text. To solve this task, we present a novel Korean text classification dataset that contains various articles. We also provide deep-learning-based text classification baseline models trained on the proposed dataset. Our dataset contains 12,000 news articles that may contain political intentions, from the politics section of six of the most representative newspaper organizations in South Korea. All the text samples are labeled simultaneously in two aspects (1) the level of political orientation and (2) the level of pro-government. To the best of our knowledge, our paper is the most large-scale Korean news dataset that contains long text and addresses multi-task classification problems. We also train recent state-of-the-art (SOTA) language models that are based on transformer architectures and demonstrate that the trained models show decent text classification performance. All the codes, datasets, and trained models are available at https://github.com/Kdavid2355/KoPolitic-Benchmark-Dataset.
Abstract:The face classification system is an important tool for recognizing personal identity properly. This paper introduces a new Large-Scale Korean Influencer Dataset named KoIn. Our presented dataset contains many real-world photos of Korean celebrities in various environments that might contain stage lighting, backup dancers, and background objects. These various images can be useful for training classification models classifying K-influencers. Most of the images in our proposed dataset have been collected from social network services (SNS) such as Instagram. Our dataset, KoIn, contains over 100,000 K-influencer photos from over 100 Korean celebrity classes. Moreover, our dataset provides additional hard case samples such as images including human faces with masks and hats. We note that the hard case samples are greatly useful in evaluating the robustness of the classification systems. We have extensively conducted several experiments utilizing various classification models to validate the effectiveness of our proposed dataset. Specifically, we demonstrate that recent state-of-the-art (SOTA) foundation architectures show decent classification performance when trained on our proposed dataset. In this paper, we also analyze the robustness performance against hard case samples of large-scale foundation models when we fine-tune the foundation models on the normal cases of the proposed dataset, KoIn. Our presented dataset and codes will be publicly available at https://github.com/dukong1/KoIn_Benchmark_Dataset.