Abstract:The study of dexterous manipulation has provided important insights in humans sensorimotor control as well as inspiration for manipulation strategies in robotic hands. Previous work focused on experimental environment with restrictions. Here we describe a method using the deformation and color distribution of the fingernail and its surrounding skin, to estimate the fingertip forces, torques and contact surface curvatures for various objects, including the shape and material of the contact surfaces and the weight of the objects. The proposed method circumvents limitations associated with sensorized objects, gloves or fixed contact surface type. In addition, compared with previous single finger estimation in an experimental environment, we extend the approach to multiple finger force estimation, which can be used for applications such as human grasping analysis. Four algorithms are used, c.q., Gaussian process (GP), Convolutional Neural Networks (CNN), Neural Networks with Fast Dropout (NN-FD) and Recurrent Neural Networks with Fast Dropout (RNN-FD), to model a mapping from images to the corresponding labels. The results further show that the proposed method has high accuracy to predict force, torque and contact surface.
Abstract:Grip control during robotic in-hand manipulation is usually modeled as part of a monolithic task, relying on complex controllers specialized for specific situations. Such approaches do not generalize well and are difficult to apply to novel manipulation tasks. Here, we propose a modular object stabilization method based on a proposition that explains how humans achieve grasp stability. In this bio-mimetic approach, independent tactile grip stabilization controllers ensure that slip does not occur locally at the engaged robot fingers. Such local slip is predicted from the tactile signals of each fingertip sensor i.e., BioTac and BioTac SP by Syntouch. We show that stable grasps emerge without any form of central communication when such independent controllers are engaged in the control of multi-digit robotic hands. These grasps are resistant to external perturbations while being capable of stabilizing a large variety of objects.