Abstract:Large Language Models (LLMs) have shown impressive abilities in data annotation, opening the way for new approaches to solve classic NLP problems. In this paper, we show how to use LLMs to create NuNER, a compact language representation model specialized in the Named Entity Recognition (NER) task. NuNER can be fine-tuned to solve downstream NER problems in a data-efficient way, outperforming similar-sized foundation models in the few-shot regime and competing with much larger LLMs. We find that the size and entity-type diversity of the pre-training dataset are key to achieving good performance. We view NuNER as a member of the broader family of task-specific foundation models, recently unlocked by LLMs.
Abstract:Many recent works have demonstrated that unsupervised sentence representations of neural networks encode syntactic information by observing that neural language models are able to predict the agreement between a verb and its subject. We take a critical look at this line of research by showing that it is possible to achieve high accuracy on this agreement task with simple surface heuristics, indicating a possible flaw in our assessment of neural networks' syntactic ability. Our fine-grained analyses of results on the long-range French object-verb agreement show that contrary to LSTMs, Transformers are able to capture a non-trivial amount of grammatical structure.