Abstract:We introduce a dataset for evidence/rationale extraction on an extreme multi-label classification task over long medical documents. One such task is Computer-Assisted Coding (CAC) which has improved significantly in recent years, thanks to advances in machine learning technologies. Yet simply predicting a set of final codes for a patient encounter is insufficient as CAC systems are required to provide supporting textual evidence to justify the billing codes. A model able to produce accurate and reliable supporting evidence for each code would be a tremendous benefit. However, a human annotated code evidence corpus is extremely difficult to create because it requires specialized knowledge. In this paper, we introduce MDACE, the first publicly available code evidence dataset, which is built on a subset of the MIMIC-III clinical records. The dataset -- annotated by professional medical coders -- consists of 302 Inpatient charts with 3,934 evidence spans and 52 Profee charts with 5,563 evidence spans. We implemented several evidence extraction methods based on the EffectiveCAN model (Liu et al., 2021) to establish baseline performance on this dataset. MDACE can be used to evaluate code evidence extraction methods for CAC systems, as well as the accuracy and interpretability of deep learning models for multi-label classification. We believe that the release of MDACE will greatly improve the understanding and application of deep learning technologies for medical coding and document classification.
Abstract:Partially Detected Intelligent Traffic Signal Control (PD-ITSC) systems that can optimize traffic signals based on limited detected information could be a cost-efficient solution for mitigating traffic congestion in the future. In this paper, we focus on a particular problem in PD-ITSC - adaptation to changing environments. To this end, we investigate different reinforcement learning algorithms, including Q-learning, Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), and Actor-Critic with Kronecker-Factored Trust Region (ACKTR). Our findings suggest that RL algorithms can find optimal strategies under partial vehicle detection; however, policy-based algorithms can adapt to changing environments more efficiently than value-based algorithms. We use these findings to draw conclusions about the value of different models for PD-ITSC systems.
Abstract:Intelligent Transportation Systems (ITS) have attracted the attention of researchers and the general public alike as a means to alleviate traffic congestion. Recently, the maturity of wireless technology has enabled a cost-efficient way to achieve ITS by detecting vehicles using Vehicle to Infrastructure (V2I) communications. Traditional ITS algorithms, in most cases, assume that every vehicle is observed, such as by a camera or a loop detector, but a V2I implementation would detect only those vehicles with wireless communications capability. We examine a family of transportation systems, which we will refer to as `Partially Detected Intelligent Transportation Systems'. An algorithm that can act well under a small detection rate is highly desirable due to gradual penetration rates of the underlying wireless technologies such as Dedicated Short Range Communications (DSRC) technology. Artificial Intelligence (AI) techniques for Reinforcement Learning (RL) are suitable tools for finding such an algorithm due to utilizing varied inputs and not requiring explicit analytic understanding or modeling of the underlying system dynamics. In this paper, we report a RL algorithm for partially observable ITS based on DSRC. The performance of this system is studied under different car flows, detection rates, and topologies of the road network. Our system is able to efficiently reduce the average waiting time of vehicles at an intersection, even with a low detection rate.