Abstract:The CDCL algorithm is the leading solution adopted by state-of-the-art solvers for SAT, SMT, ASP, and others. Experiments show that the performance of CDCL solvers can be significantly boosted by embedding domain-specific heuristics, especially on large real-world problems. However, a proper integration of such criteria in off-the-shelf CDCL implementations is not obvious. In this paper, we distill the key ingredients that drive the search of CDCL solvers, and propose a general framework for designing and implementing new heuristics. We implemented our strategy in an ASP solver, and we experimented on two industrial domains. On hard problem instances, state-of-the-art implementations fail to find any solution in acceptable time, whereas our implementation is very successful and finds all solutions.
Abstract:Answer Set Programming (ASP) is an expressive knowledge representation and reasoning framework. Due to its rather simple syntax paired with high-performance solvers, ASP is interesting for industrial applications. However, to err is human and thus debugging is an important activity during the development process. Therefore, tools for debugging non-ground answer set programs are needed. In this paper, we present a new graphical debugging interface for non-ground answer set programs. The tool is based on the recently-introduced DWASP approach for debugging and it simplifies the interaction with the debugger. Furthermore, the debugging interface is integrated in ASPIDE, a rich IDE for answer set programs. With our extension ASPIDE turns into a full-fledged IDE by offering debugging support.
Abstract:Answer Set Programming (ASP) is a popular logic programming paradigm that has been applied for solving a variety of complex problems. Among the most challenging real-world applications of ASP are two industrial problems defined by Siemens: the Partner Units Problem (PUP) and the Combined Configuration Problem (CCP). The hardest instances of PUP and CCP are out of reach for state-of-the-art ASP solvers. Experiments show that the performance of ASP solvers could be significantly improved by embedding domain-specific heuristics, but a proper effective integration of such criteria in off-the-shelf ASP implementations is not obvious. In this paper the combination of ASP and domain-specific heuristics is studied with the goal of effectively solving real-world problem instances of PUP and CCP. As a byproduct of this activity, the ASP solver WASP was extended with an interface that eases embedding new external heuristics in the solver. The evaluation shows that our domain-heuristic-driven ASP solver finds solutions for all the real-world instances of PUP and CCP ever provided by Siemens. This paper is under consideration for acceptance in TPLP.