Abstract:The increasing energy consumption and carbon footprint of deep learning (DL) due to growing compute requirements has become a cause of concern. In this work, we focus on the carbon footprint of developing DL models for medical image analysis (MIA), where volumetric images of high spatial resolution are handled. In this study, we present and compare the features of four tools from literature to quantify the carbon footprint of DL. Using one of these tools we estimate the carbon footprint of medical image segmentation pipelines. We choose nnU-net as the proxy for a medical image segmentation pipeline and experiment on three common datasets. With our work we hope to inform on the increasing energy costs incurred by MIA. We discuss simple strategies to cut-down the environmental impact that can make model selection and training processes more efficient.
Abstract:Deep learning (DL) can achieve impressive results across a wide variety of tasks, but this often comes at the cost of training models for extensive periods on specialized hardware accelerators. This energy-intensive workload has seen immense growth in recent years. Machine learning (ML) may become a significant contributor to climate change if this exponential trend continues. If practitioners are aware of their energy and carbon footprint, then they may actively take steps to reduce it whenever possible. In this work, we present Carbontracker, a tool for tracking and predicting the energy and carbon footprint of training DL models. We propose that energy and carbon footprint of model development and training is reported alongside performance metrics using tools like Carbontracker. We hope this will promote responsible computing in ML and encourage research into energy-efficient deep neural networks.