Abstract:Space layout design (SLD), occurring in the early stages of the design process, nonetheless influences both the functionality and aesthetics of the ultimate architectural outcome. The complexity of SLD necessitates innovative approaches to efficiently explore vast solution spaces. While image-based generative AI has emerged as a potential solution, they often rely on pixel-based space composition methods that lack intuitive representation of architectural processes. This paper leverages deep Reinforcement Learning (RL), as it offers a procedural approach that intuitively mimics the process of human designers. Effectively using RL for SLD requires an explorative space composing method to generate desirable design solutions. We introduce "laser-wall", a novel space partitioning method that conceptualizes walls as emitters of imaginary light beams to partition spaces. This approach bridges vector-based and pixel-based partitioning methods, offering both flexibility and exploratory power in generating diverse layouts. We present two planning strategies: one-shot planning, which generates entire layouts in a single pass, and dynamic planning, which allows for adaptive refinement by continuously transforming laser-walls. Additionally, we introduce on-light and off-light wall transformations for smooth and fast layout refinement, as well as identity-less and identity-full walls for versatile room assignment. We developed SpaceLayoutGym, an open-source OpenAI Gym compatible simulator for generating and evaluating space layouts. The RL agent processes the input design scenarios and generates solutions following a reward function that balances geometrical and topological requirements. Our results demonstrate that the RL-based laser-wall approach can generate diverse and functional space layouts that satisfy both geometric constraints and topological requirements and is architecturally intuitive.
Abstract:We present a method to fabricate double shell structures printed in trans-versal directions using multi-axis fused-deposition-modeling (FDM) robot-ic 3D printing. Shell structures, characterized by lightweight, thin walls, fast buildup, and minimal material usage, find diverse applications in pro-totyping and architecture for uses such as fa\c{c}ade panels, molds for concrete casting, or full-scale pavilions. We leverage an underlying representation of transversal strip networks generated using existing methods and propose a methodology for converting them into printable partitions. Each partition is printed separately and assembled into a double-shell structure. We out-line the specifications and workflow that make the printing of each piece and the subsequent assembly process feasible. The versatility and robust-ness of our method are demonstrated with both digital and fabricated re-sults on surfaces of different scales and geometric complexity.