Tel-Aviv-University
Abstract:Lane detection plays a crucial role in autonomous driving by providing vital data to ensure safe navigation. Modern algorithms rely on anchor-based detectors, which are then followed by a label assignment process to categorize training detections as positive or negative instances based on learned geometric attributes. The current methods, however, have limitations and might not be optimal since they rely on predefined classical cost functions that are based on a low-dimensional model. Our research introduces MatchNet, a deep learning sub-module-based approach aimed at enhancing the label assignment process. Integrated into a state-of-the-art lane detection network like the Cross Layer Refinement Network for Lane Detection (CLRNet), MatchNet replaces the conventional label assignment process with a sub-module network. This integration results in significant improvements in scenarios involving curved lanes, with remarkable improvement across all backbones of +2.8% for ResNet34, +2.3% for ResNet101, and +2.96% for DLA34. In addition, it maintains or even improves comparable results in other sections. Our method boosts the confidence level in lane detection, allowing an increase in the confidence threshold. The code will be available soon: https://github.com/sapirkontente/CLRmatchNet.git
Abstract:Transformer networks have been a focus of research in many fields in recent years, being able to surpass the state-of-the-art performance in different computer vision tasks. A few attempts have been made to apply this method to the task of Multiple Object Tracking (MOT), among those the state-of-the-art was TransCenter, a transformer-based MOT architecture with dense object queries for accurately tracking all the objects while keeping reasonable runtime. TransCenter is the first center-based transformer framework for MOT, and is also among the first to show the benefits of using transformer-based architectures for MOT. In this paper we show an improvement to this tracker using post processing mechanism based in the Track-by-Detection paradigm: motion model estimation using Kalman filter and target Re-identification using an embedding network. Our new tracker shows significant improvements in the IDF1 and HOTA metrics and comparable results on the MOTA metric (70.9%, 59.8% and 75.8% respectively) on the MOTChallenge MOT17 test dataset and improvement on all 3 metrics (67.5%, 56.3% and 73.0%) on the MOT20 test dataset. Our tracker is currently ranked first among transformer-based trackers in these datasets. The code is publicly available at: https://github.com/amitgalor18/STC_Tracker
Abstract:The goal of multi-object tracking (MOT) is detecting and tracking all the objects in a scene, while keeping a unique identifier for each object. In this paper, we present a new robust state-of-the-art tracker, which can combine the advantages of motion and appearance information, along with camera-motion compensation, and a more accurate Kalman filter state vector. Our new trackers BoT-SORT, and BoT-SORT-ReID rank first in the datasets of MOTChallenge [29, 11] on both MOT17 and MOT20 test sets, in terms of all the main MOT metrics: MOTA, IDF1, and HOTA. For MOT17: 80.5 MOTA, 80.2 IDF1, and 65.0 HOTA are achieved. The source code and the pre-trained models are available at https://github.com/NirAharon/BOT-SORT
Abstract:We consider the problem of relative pose regression in visual relocalization. Recently, several promising approaches have emerged in this area. We claim that even though they demonstrate on the same datasets using the same split to train and test, a faithful comparison between them was not available since on currently used evaluation metric, some approaches might perform favorably, while in reality performing worse. We reveal a tradeoff between accuracy and the 3D volume of the regressed subspace. We believe that unlike other relocalization approaches, in the case of relative pose regression, the regressed subspace 3D volume is less dependent on the scene and more affect by the method used to score the overlap, which determined how closely sampled viewpoints are. We propose three new metrics to remedy the issue mentioned above. The proposed metrics incorporate statistics about the regression subspace volume. We also propose a new pose regression network that serves as a new baseline for this task. We compare the performance of our trained model on Microsoft 7-Scenes and Cambridge Landmarks datasets both with the standard metrics and the newly proposed metrics and adjust the overlap score to reveal the tradeoff between the subspace and performance. The results show that the proposed metrics are more robust to different overlap threshold than the conventional approaches. Finally, we show that our network generalizes well, specifically, training on a single scene leads to little loss of performance on the other scenes.