Abstract:It is well-known that the reparameterisation gradient estimator, which exhibits low variance in practice, is biased for non-differentiable models. This may compromise correctness of gradient-based optimisation methods such as stochastic gradient descent (SGD). We introduce a simple syntactic framework to define non-differentiable functions piecewisely and present a systematic approach to obtain smoothings for which the reparameterisation gradient estimator is unbiased. Our main contribution is a novel variant of SGD, Diagonalisation Stochastic Gradient Descent, which progressively enhances the accuracy of the smoothed approximation during optimisation, and we prove convergence to stationary points of the unsmoothed (original) objective. Our empirical evaluation reveals benefits over the state of the art: our approach is simple, fast, stable and attains orders of magnitude reduction in work-normalised variance.
Abstract:We study the foundations of variational inference, which frames posterior inference as an optimisation problem, for probabilistic programming. The dominant approach for optimisation in practice is stochastic gradient descent. In particular, a variant using the so-called reparameterisation gradient estimator exhibits fast convergence in a traditional statistics setting. Unfortunately, discontinuities, which are readily expressible in programming languages, can compromise the correctness of this approach. We consider a simple (higher-order, probabilistic) programming language with conditionals, and we endow our language with both a measurable and a smoothed (approximate) value semantics. We present type systems which establish technical pre-conditions. Thus we can prove stochastic gradient descent with the reparameterisation gradient estimator to be correct when applied to the smoothed problem. Besides, we can solve the original problem up to any error tolerance by choosing an accuracy coefficient suitably. Empirically we demonstrate that our approach has a similar convergence as a key competitor, but is simpler, faster, and attains orders of magnitude reduction in work-normalised variance.