Abstract:This paper explores the application of deep learning (DL) techniques to strong motion records for single-station epicenter localization. Often underutilized in seismology-related studies, strong motion records offer a potential wealth of information about seismic events. We investigate whether DL-based methods can effectively leverage this data for accurate epicenter localization. Our study introduces AFAD-1218, a collection comprising more than 36,000 strong motion records sourced from Turkey. To utilize the strong motion records represented in either the time or the frequency domain, we propose two neural network architectures: deep residual network and temporal convolutional networks. Through extensive experimentation, we demonstrate the efficacy of DL approaches in extracting meaningful insights from these records, showcasing their potential for enhancing seismic event analysis and localization accuracy. Notably, our findings highlight significant reductions in prediction error achieved through the exclusion of low signal-to-noise ratio records, both in nationwide experiments and regional transfer-learning scenarios. Overall, this research underscores the promise of DL techniques in harnessing strong motion records for improved seismic event characterization and localization.
Abstract:Contemporary deep learning models have demonstrated promising results across various applications within seismology and earthquake engineering. These models rely primarily on utilizing ground motion records for tasks such as earthquake event classification, localization, earthquake early warning systems, and structural health monitoring. However, the extent to which these models effectively learn from these complex time-series signals has not been thoroughly analyzed. In this study, our objective is to evaluate the degree to which auxiliary information, such as seismic phase arrival times or seismic station distribution within a network, dominates the process of deep learning from ground motion records, potentially hindering its effectiveness. We perform a hyperparameter search on two deep learning models to assess their effectiveness in deep learning from ground motion records while also examining the impact of auxiliary information on model performance. Experimental results reveal a strong reliance on the highly correlated P and S phase arrival information. Our observations highlight a potential gap in the field, indicating an absence of robust methodologies for deep learning of single-station ground motion recordings independent of any auxiliary information.