Abstract:Aspect-Based Sentiment Analysis (ABSA) is an indispensable and highly challenging task in natural language processing. Current efforts have focused on specific sub-tasks, making it difficult to comprehensively cover all sub-tasks within the ABSA domain. With the development of Generative Pre-trained Transformers (GPTs), there came inspiration for a one-stop solution to sentiment analysis. In this study, we used GPTs for all sub-tasks of few-shot ABSA while defining a general learning paradigm for this application. We propose the All in One (AiO) model, a simple yet effective two-stage model for all ABSA sub-tasks. In the first stage, a specific backbone network learns the semantic information of the review and generates heuristically enhanced candidates. In the second stage, AiO leverages GPT contextual learning capabilities to generate predictions. The study conducted comprehensive comparative and ablation experiments on five benchmark datasets, and the results show that AiO can effectively handle all ABSA sub-tasks, even with few-shot data.
Abstract:Aspect sentiment triplet extraction (ASTE) is a crucial subtask of aspect-based sentiment analysis (ABSA) that aims to comprehensively identify sentiment triplets. Previous research has focused on enhancing ASTE through innovative table-filling strategies. However, these approaches often overlook the multi-perspective nature of language expressions, resulting in a loss of valuable interaction information between aspects and opinions. To address this limitation, we propose a framework that leverages both a basic encoder, primarily based on BERT, and a particular encoder comprising a Bi-LSTM network and graph convolutional network (GCN ). The basic encoder captures the surface-level semantics of linguistic expressions, while the particular encoder extracts deeper semantics, including syntactic and lexical information. By modeling the dependency tree of comments and considering the part-of-speech and positional information of words, we aim to capture semantics that are more relevant to the underlying intentions of the sentences. An interaction strategy combines the semantics learned by the two encoders, enabling the fusion of multiple perspectives and facilitating a more comprehensive understanding of aspect--opinion relationships. Experiments conducted on benchmark datasets demonstrate the state-of-the-art performance of our proposed framework.