Aspect-Based Sentiment Analysis (ABSA) is an indispensable and highly challenging task in natural language processing. Current efforts have focused on specific sub-tasks, making it difficult to comprehensively cover all sub-tasks within the ABSA domain. With the development of Generative Pre-trained Transformers (GPTs), there came inspiration for a one-stop solution to sentiment analysis. In this study, we used GPTs for all sub-tasks of few-shot ABSA while defining a general learning paradigm for this application. We propose the All in One (AiO) model, a simple yet effective two-stage model for all ABSA sub-tasks. In the first stage, a specific backbone network learns the semantic information of the review and generates heuristically enhanced candidates. In the second stage, AiO leverages GPT contextual learning capabilities to generate predictions. The study conducted comprehensive comparative and ablation experiments on five benchmark datasets, and the results show that AiO can effectively handle all ABSA sub-tasks, even with few-shot data.