Abstract:In recent years, the rapid development of large-scale models has made new possibilities for interdisciplinary fields such as architecture. In this paper, we present a novel daylight-driven AI-aided architectural design method. Firstly, we formulate a method for generating massing models, producing architectural massing models using random parameters quickly. Subsequently, we integrate a daylight-driven facade design strategy, accurately determining window layouts and applying them to the massing models. Finally, we seamlessly combine a large-scale language model with a text-to-image model, enhancing the efficiency of generating visual architectural design renderings. Experimental results demonstrate that our approach supports architects' creative inspirations and pioneers novel avenues for architectural design development. Project page: https://zrealli.github.io/DDADesign/.
Abstract:Recently, the development of large-scale models has paved the way for various interdisciplinary research, including architecture. By using generative AI, we present a novel workflow that utilizes AI models to generate conceptual floorplans and 3D models from simple sketches, enabling rapid ideation and controlled generation of architectural renderings based on textual descriptions. Our work demonstrates the potential of generative AI in the architectural design process, pointing towards a new direction of computer-aided architectural design. Our project website is available at: https://zrealli.github.io/sketch2arc