Abstract:Airborne hyperspectral images can be used to map the land cover in large urban areas, thanks to their very high spatial and spectral resolutions on a wide spectral domain. While the spectral dimension of hyperspectral images is highly informative of the chemical composition of the land surface, the use of state-of-the-art machine learning algorithms to map the land cover has been dramatically limited by the availability of training data. To cope with the scarcity of annotations, semi-supervised and self-supervised techniques have lately raised a lot of interest in the community. Yet, the publicly available hyperspectral data sets commonly used to benchmark machine learning models are not totally suited to evaluate their generalization performances due to one or several of the following properties: a limited geographical coverage (which does not reflect the spectral diversity in metropolitan areas), a small number of land cover classes and a lack of appropriate standard train / test splits for semi-supervised and self-supervised learning. Therefore, we release in this paper the Toulouse Hyperspectral Data Set that stands out from other data sets in the above-mentioned respects in order to meet key issues in spectral representation learning and classification over large-scale hyperspectral images with very few labeled pixels. Besides, we discuss and experiment the self-supervised task of Masked Autoencoders and establish a baseline for pixel-wise classification based on a conventional autoencoder combined with a Random Forest classifier achieving 82% overall accuracy and 74% F1 score. The Toulouse Hyperspectral Data Set and our code are publicly available at https://www.toulouse-hyperspectral-data-set.com and https://www.github.com/Romain3Ch216/tlse-experiments, respectively.
Abstract:The combination of machine learning models with physical models is a recent research path to learn robust data representations. In this paper, we introduce p$^3$VAE, a generative model that integrates a perfect physical model which partially explains the true underlying factors of variation in the data. To fully leverage our hybrid design, we propose a semi-supervised optimization procedure and an inference scheme that comes along meaningful uncertainty estimates. We apply p$^3$VAE to the semantic segmentation of high-resolution hyperspectral remote sensing images. Our experiments on a simulated data set demonstrated the benefits of our hybrid model against conventional machine learning models in terms of extrapolation capabilities and interpretability. In particular, we show that p$^3$VAE naturally has high disentanglement capabilities. Our code and data have been made publicly available at https://github.com/Romain3Ch216/p3VAE.