Abstract:This paper introduces a novel computational method for mapping indoor luminance values on the facade of an open workplace to improve its daylight performance. 180-degree fisheye renderings from different indoor locations, view positions, and times of the year are created. These renderings are then transformed from two-dimensional (2D) images into three-dimensional (3D) hemispheres. High luminance values are filtered and projected from the hemisphere to the facade surface. This framework will highlight the areas of the facade that allow too much light penetration into the interior environment. The flexible workflow allows occupant centric lighting analysis that computes multiple design parameters and synthesizes results for localized facade optimization and daylight design.
Abstract:We propose a novel inverse rendering method that enables the transformation of existing indoor panoramas with new indoor furniture layouts under natural illumination. To achieve this, we captured indoor HDR panoramas along with real-time outdoor hemispherical HDR photographs. Indoor and outdoor HDR images were linearly calibrated with measured absolute luminance values for accurate scene relighting. Our method consists of three key components: (1) panoramic furniture detection and removal, (2) automatic floor layout design, and (3) global rendering with scene geometry, new furniture objects, and a real-time outdoor photograph. We demonstrate the effectiveness of our workflow in rendering indoor scenes under different outdoor illumination conditions. Additionally, we contribute a new calibrated HDR (Cali-HDR) dataset that consists of 137 calibrated indoor panoramas and their associated outdoor photographs. The source code and dataset are available: https://github.com/Gzhji/Cali-HDR-Dataset.