This paper introduces a novel computational method for mapping indoor luminance values on the facade of an open workplace to improve its daylight performance. 180-degree fisheye renderings from different indoor locations, view positions, and times of the year are created. These renderings are then transformed from two-dimensional (2D) images into three-dimensional (3D) hemispheres. High luminance values are filtered and projected from the hemisphere to the facade surface. This framework will highlight the areas of the facade that allow too much light penetration into the interior environment. The flexible workflow allows occupant centric lighting analysis that computes multiple design parameters and synthesizes results for localized facade optimization and daylight design.