Abstract:The simplification and reorganization of complex expressions lies at the core of scientific progress, particularly in theoretical high-energy physics. This work explores the application of machine learning to a particular facet of this challenge: the task of simplifying scattering amplitudes expressed in terms of spinor-helicity variables. We demonstrate that an encoder-decoder transformer architecture achieves impressive simplification capabilities for expressions composed of handfuls of terms. Lengthier expressions are implemented in an additional embedding network, trained using contrastive learning, which isolates subexpressions that are more likely to simplify. The resulting framework is capable of reducing expressions with hundreds of terms - a regular occurrence in quantum field theory calculations - to vastly simpler equivalent expressions. Starting from lengthy input expressions, our networks can generate the Parke-Taylor formula for five-point gluon scattering, as well as new compact expressions for five-point amplitudes involving scalars and gravitons. An interactive demonstration can be found at https://spinorhelicity.streamlit.app .
Abstract:An important element of the $S$-matrix bootstrap program is the relationship between the modulus of an $S$-matrix element and its phase. Unitarity relates them by an integral equation. Even in the simplest case of elastic scattering, this integral equation cannot be solved analytically and numerical approaches are required. We apply modern machine learning techniques to studying the unitarity constraint. We find that for a given modulus, when a phase exists it can generally be reconstructed to good accuracy with machine learning. Moreover, the loss of the reconstruction algorithm provides a good proxy for whether a given modulus can be consistent with unitarity at all. In addition, we study the question of whether multiple phases can be consistent with a single modulus, finding novel phase-ambiguous solutions. In particular, we find a new phase-ambiguous solution which pushes the known limit on such solutions significantly beyond the previous bound.
Abstract:Polylogrithmic functions, such as the logarithm or dilogarithm, satisfy a number of algebraic identities. For the logarithm, all the identities follow from the product rule. For the dilogarithm and higher-weight classical polylogarithms, the identities can involve five functions or more. In many calculations relevant to particle physics, complicated combinations of polylogarithms often arise from Feynman integrals. Although the initial expressions resulting from the integration usually simplify, it is often difficult to know which identities to apply and in what order. To address this bottleneck, we explore to what extent machine learning methods can help. We consider both a reinforcement learning approach, where the identities are analogous to moves in a game, and a transformer network approach, where the problem is viewed analogously to a language-translation task. While both methods are effective, the transformer network appears more powerful and holds promise for practical use in symbolic manipulation tasks in mathematical physics.