Abstract:Real-world tabular databases routinely combine continuous measurements and categorical records, yet missing entries are pervasive and can distort downstream analysis. We propose Statistical-Neural Interaction (SNI), an interpretable mixed-type imputation framework that couples correlation-derived statistical priors with neural feature attention through a Controllable-Prior Feature Attention (CPFA) module. CPFA learns head-wise prior-strength coefficients $\{λ_h\}$ that softly regularize attention toward the prior while allowing data-driven deviations when nonlinear patterns appear to be present in the data. Beyond imputation, SNI aggregates attention maps into a directed feature-dependency matrix that summarizes which variables the imputer relied on, without requiring post-hoc explainers. We evaluate SNI against six baselines (Mean/Mode, MICE, KNN, MissForest, GAIN, MIWAE) on six datasets spanning ICU monitoring, population surveys, socio-economic statistics, and engineering applications. Under MCAR/strict-MAR at 30\% missingness, SNI is generally competitive on continuous metrics but is often outperformed by accuracy-first baselines (MissForest, MIWAE) on categorical variables; in return, it provides intrinsic dependency diagnostics and explicit statistical-neural trade-off parameters. We additionally report MNAR stress tests (with a mask-aware variant) and discuss computational cost, limitations -- particularly for severely imbalanced categorical targets -- and deployment scenarios where interpretability may justify the trade-off.
Abstract:This study proposes Evolutionary Causal Discovery (ECD) for causal discovery that tailors response variables, predictor variables, and corresponding operators to research datasets. Utilizing genetic programming for variable relationship parsing, the method proceeds with the Relative Impact Stratification (RIS) algorithm to assess the relative impact of predictor variables on the response variable, facilitating expression simplification and enhancing the interpretability of variable relationships. ECD proposes an expression tree to visualize the RIS results, offering a differentiated depiction of unknown causal relationships compared to conventional causal discovery. The ECD method represents an evolution and augmentation of existing causal discovery methods, providing an interpretable approach for analyzing variable relationships in complex systems, particularly in healthcare settings with Electronic Health Record (EHR) data. Experiments on both synthetic and real-world EHR datasets demonstrate the efficacy of ECD in uncovering patterns and mechanisms among variables, maintaining high accuracy and stability across different noise levels. On the real-world EHR dataset, ECD reveals the intricate relationships between the response variable and other predictive variables, aligning with the results of structural equation modeling and shapley additive explanations analyses.