University of Bristol
Abstract:Washing hands is one of the most important ways to prevent infectious diseases, including COVID-19. Unfortunately, medical staff does not always follow the World Health Organization (WHO) hand washing guidelines in their everyday work. To this end, we present neural networks for automatically recognizing the different washing movements defined by the WHO. We train the neural network on a part of a large (2000+ videos) real-world labeled dataset with the different washing movements. The preliminary results show that using pre-trained neural network models such as MobileNetV2 and Xception for the task, it is possible to achieve >64 % accuracy in recognizing the different washing movements. We also describe the collection and the structure of the above open-access dataset created as part of this work. Finally, we describe how the neural network can be used to construct a mobile phone application for automatic quality control and real-time feedback for medical professionals.
Abstract:Recent advances in both machine learning and Internet-of-Things have attracted attention to automatic Activity Recognition, where users wear a device with sensors and their outputs are mapped to a predefined set of activities. However, few studies have considered the balance between wearable power consumption and activity recognition accuracy. This is particularly important when part of the computational load happens on the wearable device. In this paper, we present a new methodology to perform feature selection on the device based on Reinforcement Learning (RL) to find the optimum balance between power consumption and accuracy. To accelerate the learning speed, we extend the RL algorithm to address multiple sources of feedback, and use them to tailor the policy in conjunction with estimating the feedback accuracy. We evaluated our system on the SPHERE challenge dataset, a publicly available research dataset. The results show that our proposed method achieves a good trade-off between wearable power consumption and activity recognition accuracy.