Abstract:Craters are one of the most studied planetary features used for different scientific analyses, such as estimation of surface age and surface processes. Satellite images utilized for crater detection often have low resolution (LR) due to hardware constraints and transmission time. Super-resolution (SR) is a practical and cost-effective solution; however, most SR approaches work on fixed integer scale factors, i.e., a single model can generate images of a specific resolution. In practical applications, SR on multiple scales provides various levels of detail, but training for each scale is resource-intensive. Therefore, this paper proposes a system for crater detection assisted with an arbitrary scale super-resolution approach (i.e., a single model can be used for multiple scale factors) for the lunar surface. Our work is composed of two subsystems. The first sub-system employs an arbitrary scale SR approach to generate super-resolved images of multiple resolutions. Subsequently, the second sub-system passes super-resolved images of multiple resolutions to a deep learning-based crater detection framework for identifying craters on the lunar surface. Employed arbitrary scale SR approach is based on a combination of convolution and transformer modules. For the crater detection sub-system, we utilize the Mask-RCNN framework. Using SR images of multiple resolutions, the proposed system detects 13.47% more craters from the ground truth than the craters detected using only the LR images. Further, in complex crater settings, specifically in overlapping and degraded craters, 11.84% and 15.01% more craters are detected as compared to the crater detection networks using only the LR images. The proposed system also leads to better localization performance, 3.19% IoU increment compared to the LR images
Abstract:Craters are one of the most prominent features on planetary surfaces, used in applications such as age estimation, hazard detection, and spacecraft navigation. Crater detection is a challenging problem due to various aspects, including complex crater characteristics such as varying sizes and shapes, data resolution, and planetary data types. Similar to other computer vision tasks, deep learning-based approaches have significantly impacted research on crater detection in recent years. This survey aims to assist researchers in this field by examining the development of deep learning-based crater detection algorithms (CDAs). The review includes over 140 research works covering diverse crater detection approaches, including planetary data, craters database, and evaluation metrics. To be specific, we discuss the challenges in crater detection due to the complex properties of the craters and survey the DL-based CDAs by categorizing them into three parts: (a) semantic segmentation-based, (b) object detection-based, and (c) classification-based. Additionally, we have conducted training and testing of all the semantic segmentation-based CDAs on a common dataset to evaluate the effectiveness of each architecture for crater detection and its potential applications. Finally, we have provided recommendations for potential future works.
Abstract:Impact craters are formed due to continuous impacts on the surface of planetary bodies. Most recent deep learning-based crater detection methods treat craters as circular shapes, and less attention is paid to extracting the exact shapes of craters. Extracting precise shapes of the craters can be helpful for many advanced analyses, such as crater formation. This paper proposes a combination of unsupervised non-deep learning and semi-supervised deep learning approach to accurately extract shapes of the craters and detect missing craters from the existing catalog. In unsupervised non-deep learning, we have proposed an adaptive rim extraction algorithm to extract craters' shapes. In this adaptive rim extraction algorithm, we utilized the elevation profiles of DEMs and applied morphological operation on DEM-derived slopes to extract craters' shapes. The extracted shapes of the craters are used in semi-supervised deep learning to get the locations, size, and refined shapes. Further, the extracted shapes of the craters are utilized to improve the estimate of the craters' diameter, depth, and other morphological factors. The craters' shape, estimated diameter, and depth with other morphological factors will be publicly available.
Abstract:Rapid technological advancements have tremendously increased the data acquisition capabilities of remote sensing satellites. However, the data utilization efficiency in satellite missions is very low. This growing data also escalates the cost required for data downlink transmission and post-processing. Selective data transmission based on in-orbit inferences will address these issues to a great extent. Therefore, to decrease the cost of the satellite mission, we propose a novel system design for selective data transmission, based on in-orbit inferences. As the resolution of images plays a critical role in making precise inferences, we also include in-orbit super-resolution (SR) in the system design. We introduce a new image reconstruction technique and a unique loss function to enable the execution of the SR model on low-power devices suitable for satellite environments. We present a residual dense non-local attention network (RDNLA) that provides enhanced super-resolution outputs to improve the SR performance. SR experiments on Kaguya digital ortho maps (DOMs) demonstrate that the proposed SR algorithm outperforms the residual dense network (RDN) in terms of PSNR and block-sensitive PSNR by a margin of +0.1 dB and +0.19 dB, respectively. The proposed SR system consumes 48% less memory and 67% less peak instantaneous power than the standard SR model, RDN, making it more suitable for execution on a low-powered device platform.
Abstract:Impact craters are formed as a result of continuous impacts on the surface of planetary bodies. This paper proposes a novel way of simultaneously utilizing optical images, digital elevation maps (DEMs), and slope maps for automatic crater detection on the lunar surface. Mask R-CNN, tuned for the crater detection task, is utilized in this paper. Two catalogs, namely, Head-LROC and Robbins, are used for the performance evaluation. Exhaustive analysis of the detection results on the lunar surface has been performed with respect to both Head-LROC and Robbins catalog. With the Head-LROC catalog, which has relatively strict crater markings and larger possibility of missing craters, recall value of 94.28\% has been obtained as compared to 88.03\% for the baseline method. However, with respect to a manually marked exhaustive crater catalog based on relatively liberal marking, significant precision and recall values are obtained for different crater size ranges. The generalization capability of the proposed method in terms of crater detection on a different terrain with different input data type is also evaluated. We show that the proposed model trained on the lunar surface with optical images, DEMs and corresponding slope maps can be used to detect craters on the Martian surface even with entirely different input data type, such as thermal IR images from the Martian surface.