Abstract:In this work, we propose a method to improve the energy efficiency and fairness of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) for mobile users, ensuring reduced power consumption while maintaining reliable communication. To achieve this, we introduce a new parameter known as the subsurface assignment variable, which determines the number of STAR-RIS elements allocated to each user. We then formulate a novel optimization problem by concurrently optimizing the phase shifts of the STAR-RIS and subsurface assignment variable. We leverage the deep reinforcement learning (DRL) technique to address this optimization problem. The DRL model predicts the phase shifts of the STAR-RIS and efficiently allocates elements of STAR-RIS to the users. Additionally, we incorporate a penalty term in the DRL model to facilitate intelligent deactivation of STAR-RIS elements when not in use to enhance energy efficiency. Through extensive experiments, we show that the proposed method can achieve fairly high and nearly equal data rates for all users in both the transmission and reflection spaces in an energy-efficient manner.