Abstract:Many real-world and artificial systems and processes can be represented as graphs. Some examples of such systems include social networks, financial transactions, supply chains, and molecular structures. In many of these cases, one needs to consider a collection of graphs, rather than a single network. This could be a collection of distinct but related graphs, such as different protein structures or graphs resulting from dynamic processes on the same network. Examples of the latter include the evolution of social networks, community-induced graphs, or ego-nets around various nodes. A significant challenge commonly encountered is the absence of ground-truth labels for graphs or nodes, necessitating the use of unsupervised techniques to analyze such systems. Moreover, even when ground-truth labels are available, many existing graph machine learning methods depend on complex deep learning models, complicating model explainability and interpretability. To address some of these challenges, we have introduced NEExT (Network Embedding Exploration Tool) for embedding collections of graphs via user-defined node features. The advantages of the framework are twofold: (i) the ability to easily define your own interpretable node-based features in view of the task at hand, and (ii) fast embedding of graphs provided by the Vectorizers library. In this paper, we demonstrate the usefulness of NEExT on collections of synthetic and real-world graphs. For supervised tasks, we demonstrate that performance in graph classification tasks could be achieved similarly to other state-of-the-art techniques while maintaining model interpretability. Furthermore, our framework can also be used to generate high-quality embeddings in an unsupervised way, where target variables are not available.
Abstract:An embedding is a mapping from a set of nodes of a network into a real vector space. Embeddings can have various aims like capturing the underlying graph topology and structure, node-to-node relationship, or other relevant information about the graph, its subgraphs or nodes themselves. A practical challenge with using embeddings is that there are many available variants to choose from. Selecting a small set of most promising embeddings from the long list of possible options for a given task is challenging and often requires domain expertise. Embeddings can be categorized into two main types: classical embeddings and structural embeddings. Classical embeddings focus on learning both local and global proximity of nodes, while structural embeddings learn information specifically about the local structure of nodes' neighbourhood. For classical node embeddings there exists a framework which helps data scientists to identify (in an unsupervised way) a few embeddings that are worth further investigation. Unfortunately, no such framework exists for structural embeddings. In this paper we propose a framework for unsupervised ranking of structural graph embeddings. The proposed framework, apart from assigning an aggregate quality score for a structural embedding, additionally gives a data scientist insights into properties of this embedding. It produces information which predefined node features the embedding learns, how well it learns them, and which dimensions in the embedded space represent the predefined node features. Using this information the user gets a level of explainability to an otherwise complex black-box embedding algorithm.