Abstract:Chronic Obstructive Pulmonary Disorder (COPD) is a prevalent respiratory disease that significantly impacts the quality of life of affected individuals. This paper presents COPDFlowNet, a novel deep-learning framework that leverages a custom Generative Adversarial Network (GAN) to generate synthetic Computational Fluid Dynamics (CFD) velocity flow field images specific to the trachea of COPD patients. These synthetic images serve as a valuable resource for data augmentation and model training. Additionally, COPDFlowNet incorporates a custom Convolutional Neural Network (CNN) architecture to predict the location of the obstruction site.
Abstract:Influence Maximization is the task of selecting optimal nodes maximising the influence spread in social networks. This study proposes a Discretized Quantum-based Salp Swarm Algorithm (DQSSA) for optimizing influence diffusion in social networks. By discretizing meta-heuristic algorithms and infusing them with quantum-inspired enhancements, we address issues like premature convergence and low efficacy. The proposed method, guided by quantum principles, offers a promising solution for Influence Maximisation. Experiments on four real-world datasets reveal DQSSA's superior performance as compared to established cutting-edge algorithms.