Abstract:Stress during public speaking is common and adversely affects performance and self-confidence. Extensive research has been carried out to develop various models to recognize emotional states. However, minimal research has been conducted to detect stress during public speaking in real time using voice analysis. In this context, the current review showed that the application of algorithms was not properly explored and helped identify the main obstacles in creating a suitable testing environment while accounting for current complexities and limitations. In this paper, we present our main idea and propose a stress detection computational algorithmic model that could be integrated into a Virtual Reality (VR) application to create an intelligent virtual audience for improving public speaking skills. The developed model, when integrated with VR, will be able to detect excessive stress in real time by analysing voice features correlated to physiological parameters indicative of stress and help users gradually control excessive stress and improve public speaking performance
Abstract:Proactive management of an Infodemic that grows faster than the underlying epidemic is a modern-day challenge. This requires raising awareness and sensitization with the correct information in order to prevent and contain outbreaks such as the ongoing COVID-19 pandemic. Therefore, there is a fine balance between continuous awareness-raising by providing new information and the risk of misinformation. In this work, we address this gap by creating a life-long learning application that delivers authentic information to users in Hindi and English, the most widely used languages in India. It does this by matching sources of verified and authentic information such as the WHO reports against daily news by using machine learning and natural language processing. It delivers the narrated content in Hindi by using state-of-the-art text to speech engines. Finally, the approach allows user input for continuous improvement of news feed relevance daily. We demonstrate this approach for Water, Sanitation, Hygiene information for containment of the COVID-19 pandemic. Thirteen combinations of pre-processing strategies, word-embeddings, and similarity metrics were evaluated by eight human users via calculation of agreement statistics. The best performing combination achieved a Cohen's Kappa of 0.54 and was deployed as On AIr, WashKaro's AI-powered back-end. We introduced a novel way of contact tracing, deploying the Bluetooth sensors of an individual's smartphone and automatic recording of physical interactions with other users. Additionally, the application also features a symptom self-assessment tool based on WHO-approved guidelines, human-curated and vetted information to reach out to the community as audio-visual content in local languages. WashKaro - http://tiny.cc/WashKaro