Abstract:This report examines the fine-tuning of Large Language Models (LLMs), integrating theoretical insights with practical applications. It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI. A comparison of fine-tuning methodologies, including supervised, unsupervised, and instruction-based approaches, highlights their applicability to different tasks. The report introduces a structured seven-stage pipeline for fine-tuning LLMs, spanning data preparation, model initialization, hyperparameter tuning, and model deployment. Emphasis is placed on managing imbalanced datasets and optimization techniques. Parameter-efficient methods like Low-Rank Adaptation (LoRA) and Half Fine-Tuning are explored for balancing computational efficiency with performance. Advanced techniques such as memory fine-tuning, Mixture of Experts (MoE), and Mixture of Agents (MoA) are discussed for leveraging specialized networks and multi-agent collaboration. The report also examines novel approaches like Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO), which align LLMs with human preferences, alongside pruning and routing optimizations to improve efficiency. Further sections cover validation frameworks, post-deployment monitoring, and inference optimization, with attention to deploying LLMs on distributed and cloud-based platforms. Emerging areas such as multimodal LLMs, fine-tuning for audio and speech, and challenges related to scalability, privacy, and accountability are also addressed. This report offers actionable insights for researchers and practitioners navigating LLM fine-tuning in an evolving landscape.
Abstract:Conversational AI systems have emerged as key enablers of human-like interactions across diverse sectors. Nevertheless, the balance between linguistic nuance and factual accuracy has proven elusive. In this paper, we first introduce LLMXplorer, a comprehensive tool that provides an in-depth review of over 150 Large Language Models (LLMs), elucidating their myriad implications ranging from social and ethical to regulatory, as well as their applicability across industries. Building on this foundation, we propose a novel functional architecture that seamlessly integrates the structured dynamics of Knowledge Graphs with the linguistic capabilities of LLMs. Validated using real-world AI news data, our architecture adeptly blends linguistic sophistication with factual rigour and further strengthens data security through Role-Based Access Control. This research provides insights into the evolving landscape of conversational AI, emphasizing the imperative for systems that are efficient, transparent, and trustworthy.