Abstract:In this challenge, we explored text-based food hazard prediction with long tail distributed classes. The task was divided into two subtasks: (1) predicting whether a web text implies one of ten food-hazard categories and identifying the associated food category, and (2) providing a more fine-grained classification by assigning a specific label to both the hazard and the product. Our findings highlight that large language model-generated synthetic data can be highly effective for oversampling long-tail distributions. Furthermore, we find that fine-tuned encoder-only, encoder-decoder, and decoder-only systems achieve comparable maximum performance across both subtasks. During this challenge, we gradually released (under CC BY-NC-SA 4.0) a novel set of 6,644 manually labeled food-incident reports.
Abstract:Many sensitive domains -- such as the clinical domain -- lack widely available datasets due to privacy risks. The increasing generative capabilities of large language models (LLMs) have made synthetic datasets a viable path forward. In this study, we domain-adapt LLMs to the clinical domain and generate synthetic clinical texts that are machine-annotated with tags for personally identifiable information using capable encoder-based NER models. The synthetic corpora are then used to train synthetic NER models. The results show that training NER models using synthetic corpora incurs only a small drop in predictive performance. The limits of this process are investigated in a systematic ablation study -- using both Swedish and Spanish data. Our analysis shows that smaller datasets can be sufficient for domain-adapting LLMs for data synthesis. Instead, the effectiveness of this process is almost entirely contingent on the performance of the machine-annotating NER models trained using the original data.
Abstract:This paper investigates the reliability of explanations generated by large language models (LLMs) when prompted to explain their previous output. We evaluate two kinds of such self-explanations - extractive and counterfactual - using three state-of-the-art LLMs (2B to 8B parameters) on two different classification tasks (objective and subjective). Our findings reveal, that, while these self-explanations can correlate with human judgement, they do not fully and accurately follow the model's decision process, indicating a gap between perceived and actual model reasoning. We show that this gap can be bridged because prompting LLMs for counterfactual explanations can produce faithful, informative, and easy-to-verify results. These counterfactuals offer a promising alternative to traditional explainability methods (e.g. SHAP, LIME), provided that prompts are tailored to specific tasks and checked for validity.
Abstract:Contaminated or adulterated food poses a substantial risk to human health. Given sets of labeled web texts for training, Machine Learning and Natural Language Processing can be applied to automatically detect such risks. We publish a dataset of 7,546 short texts describing public food recall announcements. Each text is manually labeled, on two granularity levels (coarse and fine), for food products and hazards that the recall corresponds to. We describe the dataset and benchmark naive, traditional, and Transformer models. Based on our analysis, Logistic Regression based on a tf-idf representation outperforms RoBERTa and XLM-R on classes with low support. Finally, we discuss different prompting strategies and present an LLM-in-the-loop framework, based on Conformal Prediction, which boosts the performance of the base classifier while reducing energy consumption compared to normal prompting.