Abstract:We present a deep learning model to automatically generate computer models of the human heart from patient imaging data with an emphasis on its capability to generate thin-walled cardiac structures. Our method works by deforming a template mesh to fit the cardiac structures to the given image. Compared with prior deep learning methods that adopted this approach, our framework is designed to minimize mesh self-penetration, which typically arises when deforming surface meshes separated by small distances. We achieve this by using a two-stage diffeomorphic deformation process along with a novel loss function derived from the kinematics of motion that penalizes surface contact and interpenetration. Our model demonstrates comparable accuracy with state-of-the-art methods while additionally producing meshes free of self-intersections. The resultant meshes are readily usable in physics based simulation, minimizing the need for post-processing and cleanup.
Abstract:We present a learning based framework for mesh quality improvement on unstructured triangular and quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are standard local and global element operations. The goal is to minimize the deviation of the node degrees from their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.