Abstract:We introduce a novel motion estimation method, MaskFlow, that is capable of estimating accurate motion fields, even in very challenging cases with small objects, large displacements and drastic appearance changes. In addition to lower-level features, that are used in other Deep Neural Network (DNN)-based motion estimation methods, MaskFlow draws from object-level features and segmentations. These features and segmentations are used to approximate the objects' translation motion field. We propose a novel and effective way of incorporating the incomplete translation motion field into a subsequent motion estimation network for refinement and completion. We also produced a new challenging synthetic dataset with motion field ground truth, and also provide extra ground truth for the object-instance matchings and corresponding segmentation masks. We demonstrate that MaskFlow outperforms state of the art methods when evaluated on our new challenging dataset, whilst still producing comparable results on the popular FlyingThings3D benchmark dataset.
Abstract:Traditional methods for motion estimation estimate the motion field F between a pair of images as the one that minimizes a predesigned cost function. In this paper, we propose a direct method and train a Convolutional Neural Network (CNN) that when, at test time, is given a pair of images as input it produces a dense motion field F at its output layer. In the absence of large datasets with ground truth motion that would allow classical supervised training, we propose to train the network in an unsupervised manner. The proposed cost function that is optimized during training, is based on the classical optical flow constraint. The latter is differentiable with respect to the motion field and, therefore, allows backpropagation of the error to previous layers of the network. Our method is tested on both synthetic and real image sequences and performs similarly to the state-of-the-art methods.